Multi-modular AI Approach to Streamline Autism Diagnosis in Young Children
Halim Abbas, Ford Garberson, Stuart Liu-Mayo, Eric Glover & Dennis P. Wall Scientific Reports volume 10, Article number: 5014 (2020) Cite this article 2 Altmetric | Metricsdetails Abstract Autism has become a pressing healthcare challenge. The instruments used to aid diagnosis are time and labor expensive and require trained clinicians to administer, leading to long wait times for at-risk children. We present a multi-modular, machine learning-based assessment of autism comprising three complementary modules for a unified outcome of diagnostic-grade reliability: A 4-minute, parent-report questionnaire delivered via a mobile app, a list of key behaviors identified from 2-minute, semi-structured home videos of children, and a 2-minute questionnaire presented to the clinician at the time of clinical assessment. We demonstrate the assessment reliability in a blinded, multi-site clinical study on children 18-72 months of age (n = 375) in the United States. It outperforms baseline screeners administered to children by 0.35 (90% CI: 0.26 to 0.43) in AUC and 0.69 (90% CI: 0.58 to 0.81) in specificity when operating at 90% sensitivity. Compared to the baseline screeners evaluated on children less than 48 months of age, our assessment outperforms the most accurate by 0.18 (90% CI: 0.08 to 0.29 at 90%) in AUC and 0.30 (90% CI: 0.11 to 0.50) in specificity when operating at 90% sensitivity. Read full publication here.
Effect of Wearable Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder: A Randomized Clinical Trial
JAMA Pediatr. 2019;173(5):446-454. doi:10.1001/jamapediatrics.2019.0285 Catalin Voss, MS1; Jessey Schwartz, BA2; Jena Daniels, BS2; et al Abstract Importance Autism behavioral therapy is effective but expensive and difficult to access. While mobile technology–based therapy can alleviate wait-lists and scale for increasing demand, few clinical trials exist to support its use for autism spectrum disorder (ASD) care. Objective To evaluate the efficacy of Superpower Glass, an artificial intelligence–driven wearable behavioral intervention for improving social outcomes of children with ASD. Design, Setting, and Participants A randomized clinical trial in which participants received the Superpower Glass intervention plus standard of care applied behavioral analysis therapy and control participants received only applied behavioral analysis therapy. Assessments were completed at the Stanford University Medical School, and enrolled participants used the Superpower Glass intervention in their homes. Children aged 6 to 12 years with a formal ASD diagnosis who were currently receiving applied behavioral analysis therapy were included. Families were recruited between June 2016 and December 2017. The first participant was enrolled on November 1, 2016, and the last appointment was completed on April 11, 2018. Data analysis was conducted between April and October 2018. Interventions The Superpower Glass intervention, deployed via Google Glass (worn by the child) and a smartphone app, promotes facial engagement and emotion recognition by detecting facial expressions and providing reinforcing social cues. Families were asked to conduct 20-minute sessions at home 4 times per week for 6 weeks. Main Outcomes and Measures Four socialization measures were assessed using an intention-to-treat analysis with a Bonferroni test correction. Results Overall, 71 children (63 boys [89%]; mean [SD] age, 8.38 [2.46] years) diagnosed with ASD were enrolled (40 [56.3%] were randomized to treatment, and 31 (43.7%) were randomized to control). Children receiving the intervention showed significant improvements on the Vineland Adaptive Behaviors Scale socialization subscale compared with treatment as usual controls (mean [SD] treatment impact, 4.58 [1.62]; P = .005). Positive mean treatment effects were also found for the other 3 primary measures but not to a significance threshold of P = .0125. Conclusions and Relevance The observed 4.58-point average gain on the Vineland Adaptive Behaviors Scale socialization subscale is comparable with gains observed with standard of care therapy. To our knowledge, this is the first randomized clinical trial to demonstrate efficacy of a wearable digital intervention to improve social behavior of children with ASD. The intervention reinforces facial engagement and emotion recognition, suggesting either or both could be a mechanism of action driving the observed improvement. This study underscores the potential of digital home therapy to augment the standard of care. Read full publication here.
Mobile detection of autism through machine learning on home video: A development and prospective validation study.
Plos Medicine. Published: November 27, 2018. Abstract Background The standard approaches to diagnosing autism spectrum disorder (ASD) evaluate between 20 and 100 behaviors and take several hours to complete. This has in part contributed to long wait times for a diagnosis and subsequent delays in access to therapy. We hypothesize that the use of machine learning analysis on home video can speed the diagnosis without compromising accuracy. We have analyzed item-level records from 2 standard diagnostic instruments to construct machine learning classifiers optimized for sparsity, interpretability, and accuracy. In the present study, we prospectively test whether the features from these optimized models can be extracted by blinded nonexpert raters from 3-minute home videos of children with and without ASD to arrive at a rapid and accurate machine learning autism classification. Methods and findings We created a mobile web portal for video raters to assess 30 behavioral features (e.g., eye contact, social smile) that are used by 8 independent machine learning models for identifying ASD, each with >94% accuracy in cross-validation testing and subsequent independent validation from previous work. We then collected 116 short home videos of children with autism (mean age = 4 years 10 months, SD = 2 years 3 months) and 46 videos of typically developing children (mean age = 2 years 11 months, SD = 1 year 2 months). Three raters blind to the diagnosis independently measured each of the 30 features from the 8 models, with a median time to completion of 4 minutes. Although several models (consisting of alternating decision trees, support vector machine [SVM], logistic regression (LR), radial kernel, and linear SVM) performed well, a sparse 5-feature LR classifier (LR5) yielded the highest accuracy (area under the curve [AUC]: 92% [95% CI 88%–97%]) across all ages tested. We used a prospectively collected independent validation set of 66 videos (33 ASD and 33 non-ASD) and 3 independent rater measurements to validate the outcome, achieving lower but comparable accuracy (AUC: 89% [95% CI 81%–95%]). Finally, we applied LR to the 162-video-feature matrix to construct an 8-feature model, which achieved 0.93 AUC (95% CI 0.90–0.97) on the held-out test set and 0.86 on the validation set of 66 videos. Validation on children with an existing diagnosis limited the ability to generalize the performance to undiagnosed populations. Conclusions These results support the hypothesis that feature tagging of home videos for machine learning classification of autism can yield accurate outcomes in short time frames, using mobile devices. Further work will be needed to confirm that this approach can accelerate autism diagnosis at scale. PLOS Medicine. Read full publication here.
Machine learning approach for early detection of autism by combining questionnaire and home video screening.
JAMIA. Abstract Background Existing screening tools for early detection of autism are expensive, cumbersome, time- intensive, and sometimes fall short in predictive value. In this work, we sought to apply Machine Learning (ML) to gold standard clinical data obtained across thousands of children at-risk for autism spectrum disorder to create a low-cost, quick, and easy to apply autism screening tool. Methods Two algorithms are trained to identify autism, one based on short, structured parent-reported questionnaires and the other on tagging key behaviors from short, semi-structured home videos of children. A combination algorithm is then used to combine the results into a single assessment of higher accuracy. To overcome the scarcity, sparsity, and imbalance of training data, we apply novel feature selection, feature engineering, and feature encoding techniques. We allow for inconclusive determination where appropriate in order to boost screening accuracy when conclusive. The performance is then validated in a controlled clinical study. Results A multi-center clinical study of n = 162 children is performed to ascertain the performance of these algorithms and their combination. We demonstrate a significant accuracy improvement over standard screening tools in measurements of AUC, sensitivity, and specificity. Conclusion These findings suggest that a mobile, machine learning process is a reliable method for detection of autism outside of clinical settings. A variety of confounding factors in the clinical analysis are discussed along with the solutions engineered into the algorithms. Final results are statistically limited and will benefit from future clinical studies to extend the sample size. Access full publication here.
Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism.
Molecular Autism. Abstract Background Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. Methods We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. Results By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. Conclusions The resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of autism screening, diagnosis and monitoring, possibly including analysis of short home videos. Read full publication here.
Machine learning for early detection of autism (and other conditions) using a parental questionnaire and home video screening.
2017 IEEE International Conference on Big Data. Abstract Existing screening tools for early detection of autism are expensive, cumbersome, time-intensive, and sometimes fall short in predictive value. In this work, we apply Machine Learning to gold standard clinical data obtained across thousands of children at risk for autism spectrum disorders to create a low-cost, quick, and easy to apply autism screening tool that performs better than most widely used standardized instruments. This new tool combines two screening methods into a single assessment, one based on short, structured parent-reported questionnaires and the other based on tagging key behaviors from short, semi-structured home videos of children. We demonstrate a significant accuracy improvement over standard screening tools in a clinical study sample of 162 children. We further discuss the challenge of extending machine learning algorithms to conditions beyond autism, and we propose a generalized framework for using machine learning algorithms to simultaneously search for the presence of many different conditions. Read full publication here.
Crowdsourced validation of a machine-learning classification system for autism and ADHD.
Translational Psychiatry. Abstract Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) together affect >10% of the children in the United States, but considerable behavioral overlaps between the two disorders can often complicate differential diagnosis. Currently, there is no screening test designed to differentiate between the two disorders, and with waiting times from initial suspicion to diagnosis upwards of a year, methods to quickly and accurately assess risk for these and other developmental disorders are desperately needed. In a previous study, we found that four machine-learning algorithms were able to accurately (area under the curve (AUC)>0.96) distinguish ASD from ADHD using only a small subset of items from the Social Responsiveness Scale (SRS). Here, we expand upon our prior work by including a novel crowdsourced data set of responses to our predefined top 15 SRS-derived questions from parents of children with ASD (n=248) or ADHD (n=174) to improve our model’s capability to generalize to new, ‘real-world’ data. By mixing these novel survey data with our initial archival sample (n=3417) and performing repeated cross-validation with subsampling, we created a classification algorithm that performs with AUC=0.89±0.01 using only 15 questions. Read full publication here.
Use of machine learning for behavioral distinction of autism and ADHD
Translational Psychiatry volume 6, page 732(2016) M Duda, R Ma, N Haber & D P Wall Abstract Although autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) continue to rise in prevalence, together affecting >10% of today’s pediatric population, the methods of diagnosis remain subjective, cumbersome and time intensive. With gaps upward of a year between initial suspicion and diagnosis, valuable time where treatments and behavioral interventions could be applied is lost as these disorders remain undetected. Methods to quickly and accurately assess risk for these, and other, developmental disorders are necessary to streamline the process of diagnosis and provide families access to much-needed therapies sooner. Using forward feature selection, as well as undersampling and 10-fold cross-validation, we trained and tested six machine learning models on complete 65-item Social Responsiveness Scale score sheets from 2925 individuals with either ASD (n=2775) or ADHD (n=150). We found that five of the 65 behaviors measured by this screening tool were sufficient to distinguish ASD from ADHD with high accuracy (area under the curve=0.965). These results support the hypotheses that (1) machine learning can be used to discern between autism and ADHD with high accuracy and (2) this distinction can be made using a small number of commonly measured behaviors. Our findings show promise for use as an electronically administered, caregiver-directed resource for preliminary risk evaluation and/or pre-clinical screening and triage that could help to speed the diagnosis of these disorders. Read full publication here.
Use of Artificial Intelligence to Shorten the Behavioral Diagnosis of Autism.
PLOS ONE. Abstract The Autism Diagnostic Interview-Revised (ADI-R) is one of the most commonly used instruments for assisting in the behavioral diagnosis of autism. The exam consists of 93 questions that must be answered by a care provider within a focused session that often spans 2.5 hours. We used machine learning techniques to study the complete sets of answers to the ADI-R available at the Autism Genetic Research Exchange (AGRE) for 891 individuals diagnosed with autism and 75 individuals who did not meet the criteria for an autism diagnosis. Our analysis showed that 7 of the 93 items contained in the ADI-R were sufficient to classify autism with 99.9% statistical accuracy. We further tested the accuracy of this 7-question classifier against complete sets of answers from two independent sources, a collection of 1654 individuals with autism from the Simons Foundation and a collection of 322 individuals with autism from the Boston Autism Consortium. In both cases, our classifier performed with nearly 100% statistical accuracy, properly categorizing all but one of the individuals from these two resources who previously had been diagnosed with autism through the standard ADI-R. Our ability to measure specificity was limited by the small numbers of non-spectrum cases in the research data used, however, both real and simulated data demonstrated a range in specificity from 99% to 93.8%. With incidence rates rising, the capacity to diagnose autism quickly and effectively requires careful design of behavioral assessment methods. Ours is an initial attempt to retrospectively analyze large data repositories to derive an accurate, but significantly abbreviated approach that may be used for rapid detection and clinical prioritization of individuals likely to have an autism spectrum disorder. Such a tool could assist in streamlining the clinical diagnostic process overall, leading to faster screening and earlier treatment of individuals with autism. Access full publication here.
Use of machine learning to shorten observation-based screening and diagnosis of autism.
Translational Psychiatry. Abstract The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336 individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity, correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization—in particular those focused on assessment of short home videos of children—that speed the pace of initial evaluation and broaden the reach to a significantly larger percentage of the population at risk. Read full publication here.